THE LAW OF THE ITERATED LOGARITHM FOR BROWNIAN MOTION IN A BANACH SPACE

BY J. KUELBS(1) AND R. LEPAGE

ABSTRACT. Strassen's version of the law of the iterated logarithm is proved for Brownian motion in a real separable Banach space. We apply this result to obtain the law of the iterated logarithm for a sequence of independent Gaussian random variables with values in a Banach space and to obtain Strassen's result.

Introduction. Let H denote a real separable Hilbert space with norm $\|\cdot\|_H$ and assume $\|\cdot\|_B$ is a measurable norm on H in the sense of [2]. Then there exists a constant M > 0 such that $\|x\|_B \le M\|x\|_H$ for all $x \in H$, and if B is the completion of H in $\|\cdot\|_B$ it follows that B is a real separable Banach space. We will view H as a subspace of B and since $\|\cdot\|_B$ is weaker than $\|\cdot\|_H$ on H it follows that B^* , the topological dual of B, can be continuously injected into H^* , the topological dual of H. We call (H, B) an abstract Wiener space.

For t > 0, let m_t denote the canonical Gaussian cylinder set measure on H with variance parameter t and let μ_t (t > 0) denote the Borel probability measure on B induced by m_t (t > 0). We call μ_t the Wiener measure on B generated by H with variance parameter t.

Let Ω_B denote the space of continuous functions w from $[0, \infty)$ into B such that w(0) = 0, and let \Im be the σ -field of Ω_B generated by the functions $w \to w(t)$. Then there is a unique probability measure P on \Im such that if $0 = t_0 < t_1 < \cdots < t_n$ then $w(t_j) - w(t_{j-1})$ ($j = 1, \ldots, n$) are independent and $w(t_j) - w(t_{j-1})$ has distribution $\mu_{t_j-t_{j-1}}$ on B. In particular, the stochastic process W_i defined on (Ω_B, \Im, P) by $W_i(w) = w(t)$ has stationary independent Gaussian increments with transition probabilities $P_i(x, A) = \mu((A - x)/\sqrt{t})$ for t > 0. We call it Brownian motion in B. For a more detailed discussion see [2].

It is known from [2] that if B is an arbitrary real separable Banach space, then there exists a dense subset H of B which is a real separable Hilbert space and the given norm on B is a measurable norm on H. Hence any real separable Banach space can be used in the setup we described above. We also know from [5] or from [6] and [1] that if μ is any mean zero Gaussian probability measure on the Borel subsets of a real separable Banach space B, then there exists a real separable Hilbert space H which is a subset of B, the given norm on B is a

Received by the editors June 21, 1972.

AMS (MOS) subject classifications (1970). Primary 60G15, 60G17, 60B05, 60J65; Secondary 28A40.

Key words and phrases. Abstract Wiener spaces, measurable norm, Gaussian measures, Strassen law of the iterated logarithm, Brownian motion in a Banach space.

⁽¹⁾ Supported in part by NSF Grant GP 18759.

measurable norm on H, $\mu(M) = 1$ (M is the closure of H in B), and μ is the Wiener measure on M generated by H with variance parameter 1. Furthermore, H is unique as a subset of B since it is precisely the set of vectors such that μ translated by such a vector yields a measure equivalent to μ . However, the main point to be realized is that given any real separable Banach space B, or B and a mean zero Gaussian measure μ on B, we can construct a Brownian motion on B as indicated above. Further, in the case μ is given on B we see that $\mu = \mu_1$ and that if M is a proper subspace of B then our Brownian motion is, with probability one, in the closed subspace M satisfying $\mu_1(M) = 1$.

Let C_B denote the continuous functions on [0, 1] into B which vanish at zero. Then C_B is a Banach space in the norm $||f||_{C_B} = \sup_{0 \le t \le 1} ||f(t)||_B$.

Lemma 1. (a) If B is a real separable Banach space, then C_B is a real separable Banach space in the norm $\|\cdot\|_{C_B}$.

- (b) The minimal sigma-algebra \mathcal{B} making the mappings $f \to f(t)$ measurable consists of the Borel subsets of C_R .
- (c) Brownian motion on B induces a probability measure P on (C_B, \mathcal{B}) which is a mean zero Gaussian measure, i.e. every linear functional in C_B^* has a Gaussian distribution with mean zero.
- **Proof.** (a) Let $t_j = j/2^N$, $j = 0, 1, ..., 2^N$. Let $\{x_n\}$ be a dense subset of B. Let S_N denote the subset of C_B consisting of functions which are linear on each of the subintervals $[t_{j-1}, t_j]$ with values at t_j in $\{x_n\}$. Then $\bigcup_{N=1}^{\infty} S_N$ is a countable dense subset of C_B .
- (b) Since C_B is separable it suffices to prove that if $f_0 \in C_B$ and $\epsilon > 0$, then $U = \{f: ||f f_0||_{C_B} \le \epsilon\}$ is a set in \mathcal{B} . Let $I_N = \{f: \sup_{1 \le j \le 2^N} ||f(t_j) f_0(t_j)||_{C_B} \le \epsilon\}$ for $N = 1, 2, \ldots$ and $\{t_j\}$ as in (a). Then $U = \bigcap_{N=1}^{\infty} I_N$.
- (c) P is the probability measure on (C_B, \mathcal{B}) such that if $0 = t_0 < t_1 < \cdots < t_n \le 1$ then $f(t_j) f(t_{j-1})$ $(j = 1, \dots, n)$ are independent and $f(t_j) f(t_{j-1})$ has distribution $\mu_{t_j t_{j-1}}$ on B. We now must show P is a mean zero Gaussian measure on C_B . Let $f^* \in C_B^*$ and let X_1, \dots, X_n be independent random variables with values in C_B and the same distribution as P. Then $X_1 + \dots + X_n / \sqrt{n}$ has distribution P since for each $t \in [0,1]$ the law of the map $f \to f(t)$ is the convolution of $\mu_{t/n}$ n times yielding μ_t . Hence the distribution of f^* has the same distribution as

$$f^*(X_1 + \cdots + X_n/\sqrt{n}) = f^*(X_1) + \cdots + f^*(X_n)/\sqrt{n}$$

and we see by [4, p. 166] that f^* is strictly stable with characteristic exponent 2 and this implies f^* has a Gaussian distribution with mean zero.

Our main result is a law of the iterated logarithm for Brownian motion in a Banach space as described prior to Lemma 1. This may be regarded as a general synthesis of the two log log law which follows.

I. (Strassen [10]). Let Ω_k denote the set of continuous maps from $[0, \infty)$ into

real k-dimensional space (\mathbf{R}^k) which vanish at zero, and let C_k denote the space of continuous maps vanishing at zero and mapping [0,1] into \mathbf{R}^k endowed with the supremum of the Euclidean norm for \mathbf{R}^k . If $W(t) = (W_1(t), \ldots, W_k(t))$, $0 \le t < \infty$, is a version of the k-dimensional Brownian motion with sample paths in Ω_k , then the sequence of random functions

$$\zeta_n(t) = W(nt)/(2n \log \log n)^{1/2} \qquad (0 \le t \le 1, n \ge 3)$$

satisfies the following log log law:

 $\{\zeta_n, n \geq 3\} \subseteq C_k$ and with probability one converges in C_k to a compact set K_k of C_k and clusters at every point of K_k .

Here K_k denotes those $f = (f_1, \ldots, f_k) \in C_k$ such that f is coordinatewise absolutely continuous with respect to Lebesgue measure on [0, 1], and satisfies $\sum_{i=1}^k \int_0^1 [df_i(s)/ds]^2 ds \le 1$. By saying $\{\zeta_n \colon n \ge 3\}$ converges to K_k we mean that for every $\epsilon > 0$ the sequence is eventually within an ϵ -neighborhood of K_k and since K_k is compact this implies that with probability one $\{\zeta_n \colon n \ge 3\}$ is relatively norm compact in C_k .

II. (LePage [8]). Suppose B is a real separable Banach space and μ is a mean zero Gaussian measure on the Borel subsets of B. If X_1, X_2, \ldots are independent identically distributed B-valued random vectors with distribution μ , then the sequence

$$\xi_n = X_1 + \cdots + X_n/(2n \log \log n)^{1/2} \qquad (n \ge 3)$$

almost surely converges in *B*-norm to a closed set $K \subseteq B$ and clusters at every point of K, where K is the unit ball of the reproducing kernel Hilbert space defined on $B^* \times B^*$ by μ .

The set K_k of Strassen's result may be identified as the unit ball of the reproducing kernel Hilbert space of the kernel defined for $0 \le s$, $t \le 1$, $0 \le i, j \le k$ by

(1)
$$E(w_i(s)w_j(t)) = \min(s,t)\delta_{ij}.$$

This suggests that I may be extended to B-valued Brownian motion using the methods of II. As it turns out, the resulting Theorem 1 of §4 contains both I and II as special cases, and is obtained in a self-contained manner independent of I and II.

2. Some properties of Brownian motion on B. Here we provide some basic lemmas. The content of Lemma 2 is found in [7] and can also be expressed in slightly different terms using [6].

Lemma 2. For (B, μ) as in II, let \mathcal{L} be the closure of B^* in $L_2(B, \mu)$. For each $L \in \mathcal{L}$ the convergent Bochner integral $x_L = \int_B L(x) x \, \mu(dx) \in B$ exists. H

 $=\{x_L\colon L\in\mathcal{L}\}\subseteq B$ is a real separable Hilbert space isometrically isomorphic to \mathcal{L} under the inner product $(x_{L_1},x_{L_2})=\int_B L_1(x)L_2(x)\mu(dx)$. On H, $\|\cdot\|_B\leq \|\mu\|\|\cdot\|_H$ where $\|\mu\|^2=\int_B \|x\|_B^2\mu(dx)<\infty$. If $y^*\in B^*$ and $y=\int_B y^*(x)x\mu(dx)$, then $(y,x)_H=y^*(x)$ for every $x\in H$. If $\{x_j^*\colon j\geq 1\}\subseteq B^*$ is a complete orthonormal sequence for \mathcal{L} and $\{x_j\colon j\geq 1\}\subseteq H$ is the set of images $x_j=\int_B x_j^*(x)x\mu(dx)$ $(j\geq 1)$, then $\sum_{j=1}^k x_j^*(x)x_j\to x$ as $k\to\infty$, everywhere on H in the sense of the H-norm and almost everywhere on H in the H-norm. The closure H of H in H is the topological support of H on H and if elements of H are interpreted as (evaluation) functions on H, H may be interpreted as the reproducing kernel Hilbert space of H.

Proof. That H is separable follows from [6] and the remainder is given in [7]. By [1, Theorems 2 and 3] and the fact that $\|\cdot\|_B \le M\|\cdot\|_H$ we have that $\|\cdot\|_B$ is a measurable norm in the sense of Gross [2] and hence (H, \overline{H}) is an abstract Wiener space.

Lemma 3. Let B be a real separable Banach space with norm $\|\cdot\|_B$. Let H be a subspace of B which is a real Hilbert space in the norm $\|\cdot\|_H$ and assume $\|\cdot\|_B$ is a measurable norm on H. Let K denote the unit ball of H, i.e. $K = \{x \in H: \|x\|_H \le 1\}$. Then K is a compact subset of B.

Proof. First we show K is a closed subset of B. Let $\{y_n\} \subseteq K$ and assume $\lim_n y_n = y \in B$ in the norm $\|\cdot\|_B$. Now $\{y_n\} \subseteq K$ implies there is a subsequence $\{y_{n_j}\}$ such that $\{y_{n_j}\}$ converges weakly in H to $z \in H$. Now $\|z\|_H \le 1$ by the uniform boundedness principle, and since $\{y_{n_j}\}$ also converges to y in $\|\cdot\|_B$ we have $\{y_{n_j}\}$ converging weakly to y and to z in B because B^* can be viewed as a subset of H^* . That is, since $\|\cdot\|_B$ is a measurable norm on H we have a constant M such that $\|\cdot\|_B \le M\|\cdot\|_H$, and hence B^* can be continuously injected into H^* . Now B^* separating points of B implies y = z, and hence $z \in K$ implies $y \in K$. Hence K is closed in B.

Now we show K is compact in B. To do this we note that since $\|\cdot\|_B$ is a measurable norm on H we can construct a second measurable norm on H as in [2], call it $\|\cdot\|_1$, such that for r > 0, $V_r = \{x \in H: \|x\|_1 \le r\}$ has a compact closure in B. Now $\|\cdot\|_1$ measurable on H implies there exists an M > 0 such that $\|x\|_1 \le M\|x\|_H$ for all $x \in H$, and hence $K \subseteq \{x \in H: \|x\|_1 \le M\}$. Thus K has compact closure in B and since K is closed we have K compact.

There are three separable Banach spaces, each with a mean zero Gaussian measure situated on its Borel subsets, which figure in our analysis. Of these, (C_B, P) and (B, μ) have already been introduced. The third is (C, ν) where C is the space of real-valued continuous maps on [0, 1] which vanish at zero (with the supremum norm) and ν is Wiener measure. Each of (C_B, P) , (C, ν) , (B, μ) satisfies the hypotheses of Lemma 2. Let $\mathcal{H} \subseteq C_B$, $H_0 \subseteq C$, $H \subseteq B$ denote the respective Hilbert spaces given for each of these spaces by Lemma 2, and let \mathcal{H} , K_0 , K be the respective unit balls of these spaces. Then Lemma 3 applies to \mathcal{H} , K_0 and K.

Using Lemma 2 one may prove the following familiar characterization of H_0 : $\phi \in H_0$ iff $\phi(0) = 0$, ϕ is absolutely continuous with respect to Lebesgue measure on [0, 1] and $\int_0^1 [(d/dt)\phi(t)]^2 dt < \infty$. The inner product on H_0 is

$$(\phi_1, \phi_2)_{H_0} = \int_0^1 \frac{d}{dt} \phi_1(t) \frac{d}{dt} \phi_2(t) dt.$$

Our next result enables us to interpret \mathcal{A} as a denumerable direct sum of copies of H_0 .

Lemma 4. \mathcal{A} has the following characterization in terms of any set $\{x^*_j: j \geq 1\}$ $\subseteq B^*$ such that $\{x_j: j \geq 1\}$ is a complete orthonormal set for $H: f \in \mathcal{A}$ iff $f(0) = 0, f(t) \in H$ for each $t \in [0, 1]$, each $x^*_i(f) \in H_0$, and

$$\sum_{j} \int_0^1 \left[(d/dt) x_j^*(f)(t) \right]^2 dt < \infty.$$

The inner product on \mathcal{A} is given by

$$(f_1,f_2)_{\mathcal{H}} = \sum_i \int_0^1 \frac{d}{dt} x^*_j f_1(t) \frac{d}{dt} x^*_j f_2(t) dt \quad \text{for } f_1, f_2 \in \mathcal{H}.$$

In somewhat greater detail we have the following:

- (a) $\mathcal{H} = H_0 \otimes H$ (the tensor product).
- (b) If $x^* \in B^*$ and $f \in \mathcal{A}$ then $x^*f \in H_0$ and, for every $\phi \in H_0$, $(x^*f, \phi)_{H_0} = (f, \phi x)_{\mathcal{A}}$, where $(x^*f)(t) = x^*(f(t))$, $t \in [0, 1]$. $||x^*f||_{H_0} \le ||f||_{\mathcal{A}} ||x||_{H_0}$.
- (c) If $f \in \mathcal{A}$ and $t \in [0,1]$ then $f(t) \in H$ and, for every $x^* \in B^*$, $(f(t),x)_H = (f,\min(t,\cdot)x)_{\mathcal{A}^*} ||f(t)||_H \le ||f||_{\mathcal{A}} \sqrt{t}$.
- (d) For $\{x_j^*: j \geq 1\} \subseteq B^*$ and $\{x_j: j \geq 1\} \subseteq H$ as above, $\sum_{j=1}^k x_j^*(f)x_j \to f$ as $k \to \infty$ everywhere on \mathcal{H} in the sense of \mathcal{H} norm and almost everywhere on C_B in the sense of C_B norm. That is, if P is the Gaussian measure induced on the Borel subsets of C_B by Brownian motion on B, then with P-probability one for $f \in C_B$

$$\sup_{0 \le t \le 1} \left\| f(t) - \sum_{j=1}^{k} x_{j}^{*}(f(t)) x_{j} \right\|_{R} \to 0 \quad \text{as } k \to \infty,$$

and the law of $x_j^*f(t)$ $(j \ge 1)$ is that of mutually independent one dimensional Brownian motions normalized as usual.

Proof. For each $t \in [0, 1]$, $x^* \in B^*$, let $\Lambda_{t,x^*}(f) = x^*(f(t))$ for $f \in C_B$. Then $\Lambda_{t,x^*} \in C_{B^*}$ and these functionals separate points of C_B . To prove $\mathcal{H} = H_0 \otimes H$, suppose $t \in [0, 1]$, $x^* \in B^*$. We first show that the element of C_B defined by $\min\{t, \cdot\}x$ is the Bochner integral $\int_{C_B} \Lambda_{t,x^*}(f) f P(df)$ and therefore by Lemma 2 applied to (C_B, P) we have $\min(t, \cdot)x \in \mathcal{H}$. We proceed by evaluation of the two expressions. If $s \in [0, 1]$, $y^* \in B^*$, then

(2)
$$\Lambda_{s,y^*}(\min(t,\cdot)x) = \min(t,s)y^*(x) = \min(t,s)(y,x)_H$$

by Lemma 2. Now

(3)
$$\Lambda_{s,y^*} \left(\int_{C_s} \Lambda_{t,x^*}(f) f P(df) \right) = \int_{C_s} x^*(f(t)) y^*(f(s)) P(df) \\ = \int_{C_s} x^*(f(\min(t,s))) y^*(f(\min(t,s))) P(df)$$

by independence of increments, and using the stationarity of the increments of Brownian motion on B we have (3) equal to

(4)
$$\min(t,s) \int_{C_n} x^*(f(1))y^*(f(1)) P(df) = \min(t,s)(y,x)_H$$

since $f \to f(1)$ induces the measure $\mu = \mu_1$ on B. Combining (2) and (4) we have $\min(t, \cdot)x \in \mathcal{A}$. From (3) and (4) we have the factorization

$$(\min(s,\cdot)y,\min(t,\cdot)x)_{\mathcal{H}} = \min(s,t)(x,y)_{H}$$
$$= (\min(s,\cdot),\min(t,\cdot))_{H_{\bullet}}(x,y)_{H_{\bullet}}$$

This proves $\mathcal{H} = H_0 \otimes H$ provided the elements $\{\min(t, \cdot)x : 0 \le t \le 1, x^* \in B^*\}$ can be shown to span \mathcal{H} (for a discussion of tensor products of reproducing kernel Hilbert spaces see [9]). To see this, suppose $f_0 \in \mathcal{H}$ and $(f_0, \min(t, \cdot)x)_{\mathcal{H}} = 0$ for all $t \in [0, 1], x^* \in B^*$. By Lemma 2 there is an element L_0 belonging to the closure of the subspace of $L^2(C_B, P)$ spanned by C_B^* for which $f_0 = \int_{C_B} L_0(f) f P(df)$. Then

$$\Lambda_{t,x^*}(f_0) = \int_{C_*} L(f) \Lambda_{t,x^*}(f) P(df) = (f_0, \min(t, \cdot)x)_{\mathcal{A}} = 0$$

for all t and x^* . Hence $f_0 = 0$ in C_B and in \mathcal{A} . This completes the proof of $\mathcal{A} = H_0 \otimes H$.

To prove (b) suppose $x^* \in B^*$, $f \in \mathcal{A}$, $\phi \in H_0$. If f is of the specialform $f = \phi_1 x_1$ with $\phi_1^* \in C^*$, $x_1^* \in B^*$, then $x^*f = \phi_1 x^*(x_1) \in H_0$ and $(f, \phi x)_{\mathcal{A}} = (\phi_1 x_1, \phi x)_{\mathcal{A}} = (x_1, x)_H (\phi_1, \phi)_{H_0} = x^*(x_1) (\phi_1, \phi)_{H_0} = (x^*(\phi_1 x_1), \phi)_{H_0} = (x^*f, \phi)_{H_0}$. Thus for every f expressible as a finite sum of elements of the form $\phi_1 x_1$ we have $x^*f \in H_0$ and $(x^*f, \phi)_{H_0} = (f, \phi x)$. To extend this to all $f \in \mathcal{A}$ we need for f of the type of sum just considered the inequality $||x^*f||_{H_0} \leq ||f||_{\mathcal{A}} \cdot ||x||_{H}$. To prove this note that if $\{\phi_j^*: j \geq 1\} \subseteq C^*$ and $\{\phi_j: j \geq 1\} \subseteq H_0$ is complete and orthonormal for H_0 then for f of the above type,

$$||x^*f||_{H_0}^2 = \sum_i (x^*f, \phi_i)_{H_0}^2 = \sum_i (f, \phi_i x)^2 \le ||f||_{\mathcal{H}}^2 ||x||_H^2$$

since $\{\phi_j x: j \geq 1\} \subseteq \mathcal{H}$ are orthogonal in the tensor product and each have norm squared equal to $||x||_H^2$. If $f \in \mathcal{H}$ then there exists $f_n \in \mathcal{H}$ of the above type tending to f in \mathcal{H} . Now $\mathcal{H} \subseteq C_B$ and $x^* \in B^*$ implies $x^*(f_n(t)) \to x^*(f(t))$ as $n \to \infty$ since $f_n \to f$ in \mathcal{H} implies $f_n \to f$ in C_B by Lemma 2. Further, by the above inequality x^*f_n converges in H_0 as $n \to \infty$. Combining the last two statements we have $x^*f \in H_0$ and $x^*f_n \to x^*f$ in H_0 . Finally,

$$(x^*f,\phi)_{H_0} = \lim_n (x^*f_n,\phi)_{H_0} = \lim_n (f_n,x)_{A} = (f,\phi x)_{A}$$

and

$$\|x^*f\|_{H_0}^2 = \lim_{n \to \infty} \|x^*f_n\|_{H_0}^2 \le \lim_{n \to \infty} \|f_n\|_{\mathcal{H}}^2 \|x\|_H^2 = \|f\|_{\mathcal{H}}^2 \|x\|_H^2.$$

The proof of (c) is analogous to (b). Suppose $f \in \mathcal{H}$ and $t \in [0, 1]$. If f is of the form $\phi_1 x_1$ for some $\phi_1^* \in C^*$, $x_1^* \in B^*$ then $f(t) = \phi_1(t)x_1 \in H$ and if $x \in H$ then from Lemma 2 $(f(t), x)_H = x^*f(t) = (f, \min(t, \cdot)x)_{\mathcal{H}}$ from part (a). If f is a finite sum of elements of the above type then $f(t) \in H$, $(f(t), x)_H = (f, \min(t, \cdot x))_{\mathcal{H}}$ and

$$||f(t)||_{H}^{2} = \sum_{j} (f(t), x_{j})_{H}^{2} = \sum_{j} (f, \min(t, \cdot) x_{j})_{\mathcal{A}}^{2} \le ||f||_{\mathcal{A}}^{2} ||\min(t, \cdot)||_{H_{0}}^{2} = t ||f||_{\mathcal{A}}^{2}.$$

Suppose f_n are such finite sums and $f_n o f$ in \mathcal{A} . Then $f_n(t)$ converges to f(t) in B and $x^*f_n(t) o x^*f(t)$ for each $x^* \in B^*$. By the previous inequality $f_n(t)$ converges in H, and hence $f(t) \in H$ and $f_n(t) o f(t)$ in H. By passage to the limit we get $(f(t), x)_H = (f, \min(t, \cdot)x)_{\mathcal{A}}$ and $||f(t)||_H \le ||f||_{\mathcal{A}} \sqrt{t}$.

To prove (d) assume $\{x_j^*: j \ge 1\} \subseteq B^*$ and $\{x_j: j \ge 1\} \subseteq H$ is a complete orthonormal set for H. Likewise suppose $\{\phi_n^*: n \ge 1\} \subseteq C^*$ and $\{\phi_n: n \ge 1\} \subseteq H_0$ is complete and orthonormal for H_0 . Then from (a) $\{\phi_n x_j: n \ge 1, j \ge 1\} \subseteq H$ is complete and orthonormal for H_0 . For arbitrary $n \ge 1, j \ge 1$ we see that for every $\phi \in H_0$, $x \in H$, $\phi_n^* x_j^* (\phi x) = \phi_n^* (\phi) x_j^* (x)$ by linearity. From Lemma 2 we have $\phi_n^* x_j^* (\phi x) = (\phi_n, \phi)_{H_0} (x_j, x)_h$ and hence $\phi_n^* x_j^*$ yields $\phi_n x_j$ by Bochner integration on C_B . Then everywhere on H and in H norm we have H and in H norm we have H and H norm we have H norm we have H norm H obtaining

$$f = \sum_{i} \left(\sum_{n} (f, \phi_{n} x_{j})_{\mathcal{A}} \phi_{n} \right) x_{j} = \sum_{i} \left(\sum_{n} (x^{*}_{j} f, \phi_{n})_{H_{0}} \phi_{n} \right) x_{j} = \sum_{i} x^{*}_{j} (f) x_{j}.$$

The argument may be repeated almost everywhere on C_B in C_B norm and hence $f = \sum_j x_j^*(f) x_j$ almost everywhere on C_B .

Using the explicit description of H_0 given previous to the present lemma the characterization of \mathcal{A} with which we began the statement of the lemma follows easily from the above series representation.

Since P is a mean zero Gaussian measure on C_B^1 it follows easily from (3) and (4) (since the joint distributions are all Gaussian) that $x_j^*f(t)$ $(j \ge 1)$ are independent one dimensional Brownian motions.

For every $\epsilon > 0$ let \mathcal{K}_{ϵ} denote the open ϵ -neighborhood of \mathcal{K} in $C_{R^{\epsilon}}$

Lemma 5. For each $\epsilon > 0$, there exists r > 1 such that

$$P\{f \in C_B: f/\sqrt{2 \log \log s} \notin \mathcal{K}_e\} \le \exp(-r^2 \log \log s)$$

for all sufficiently large s.

Proof. This result can be proved just as Proposition 1 of [8] is obtained.

Lemma 6. If $\epsilon > 0$ one may choose c > 1 sufficiently close to one so that for every $f \in \Omega_B$ the statements $[c^n] \leq s \leq [c^{n+1}]$ and $f([c^{n+1}] \cdot)/\{2[c^{n+1}]\log\log[c^{n+1}]\}^{1/2}$ $\in \mathcal{K}_{\epsilon}$ together imply $f(s \cdot)/\sqrt{2s \log\log s} \in \mathcal{K}_{2\epsilon}$ for all sufficiently large n.

Proof. Suppose $\epsilon > 0$ and choose c > 1 so that for all sufficiently large n, $\gamma_n \epsilon + (\gamma_n - 1) ||P|| < 2\epsilon$ where

$$\gamma_n = \left(\frac{[c^{n+1}]\log\log[c^{n+1}]}{[c^n]\log\log[c^n]}\right)^{1/2}.$$

This is possible because $[c^{n+1}] < c^2[c^n]$ for all large n. If $h \in \mathcal{K}, f \in C_B$,

$$||f([c^{n+1}] \cdot)/(2[c^{n+1}]\log\log[c^{n+1}])^{1/2} - h(\cdot)||_{C_0} < \epsilon,$$

then

$$\left\| f(s \cdot) / (2[c^{n+1}] \log \log[c^{n+1}])^{1/2} - h\left(\frac{s \cdot}{[c^{n+1}]}\right) \right\|_{C_{\bullet}} < \epsilon$$

and

$$\left\|h\left(\frac{s\cdot}{[c^{n+1}]}\right)\right\|_{\mathcal{A}} \leq \frac{s}{[c^{n+1}]} \|h\|_{\mathcal{A}} \leq 1.$$

Hence $h((s/[c^{n+1}]) \cdot) \in \mathcal{K}$ and

$$\left\| f(s \cdot) / (2s \log \log s)^{1/2} - h \left(\frac{s \cdot}{[c^{n+1}]} \right) \right\|_{C_{\theta}}$$

$$\leq \left\| f(s \cdot) / (2s \log \log s)^{1/2} - \left(\frac{[c^{n+1}] \log \log[c^{n+1}]}{s \log \log s} \right)^{1/2} h \left(\frac{s \cdot}{[c^{n+1}]} \right) \right\|_{C_{\theta}}$$

$$+ \|P\| \left\| \left(\frac{[c^{n+1}] \log \log[c^{n+1}]}{s \log \log s} \right)^{1/2} h \left(\frac{s \cdot}{[c^{n+1}]} \right) - h \left(\frac{s \cdot}{[c^{n+1}]} \right) \right\|_{\mathcal{A}}$$

$$\leq \gamma_{n} \epsilon + (\gamma_{n} - 1) \|P\| < 2\epsilon$$

if n is sufficiently large.

For what follows we assume $\{x_j^*: j \ge 1\} \subseteq B^*$ and $\{x_j: j \ge 1\} \subseteq H$ is complete and orthonormal for H. For each $k \ge 1$ and $f \in C_B$ let $f^{(k)} = \sum_{j=1}^k x_j^*(f)x_j$.

Lemma 7. For each $\epsilon > 0$ and r > 1 there exists k sufficiently large so that

(5)
$$P(f \in C_B: ||f - f^{(k)}||_{C_B} \ge \epsilon \sqrt{2 \log \log s}) \le \exp(-r^2 \log \log s)$$
 for all sufficiently large s.

Proof. By (d) of Lemma 4 this result follows just as in Lemma 4 of [8].

The main theorem and some corollaries. Our basic theorem is the following and implies the result of Strassen mentioned in I and that of LePage in II.

Theorem 1. Let $\{W(t): 0 \le t < \infty\}$ be Brownian motion on B and for each $t \in [0, 1], s \ge 3$, let

$$\zeta_s(t) = W(st)/\sqrt{2s \log \log s}$$
.

Then the net $\{\zeta_s: s \geq 3\}$ is a subset of C_B and with probability one converges in C_B to the compact set K and clusters at every point of K, where K is the unit ball of the reproducing kernel Hilbert space (equivalently, K is the unit ball of the Hilbert subspace of C_B which generates P).

Proof. That \mathcal{K} is compact in C_B follows from Lemma 3 by applying the lemma to C_B , \mathcal{A} , and $\|\cdot\|_{C_B}$. For every $\epsilon > 0$, there exists r > 1 such that

$$\Pr(\zeta_s \notin \mathcal{K}_{\epsilon}) = P(f \in C_B : ||f - \mathcal{K}||_{C_{\delta}} \ge \epsilon \sqrt{2 \log \log s})$$

$$\le \exp(-r^2 \log \log s)$$

for all sufficiently large s by Lemma 5. Hence by the Borel-Cantelli lemma for c > 1 there is a set A of probability one such that the sequence $\zeta_{[c^n]} \in \mathcal{K}_{\epsilon}$ for all but finitely many n. Therefore by Lemma 6 $\zeta_s \in \mathcal{K}_{2\epsilon}$ for all s sufficiently large on the set A. Letting ϵ converge to zero through a countable set we have

$$\Pr\{\zeta_s \to \mathcal{K} \text{ as } s \to \infty \text{ in } C_R\} = 1.$$

To prove \mathcal{K} is almost surely the set of cluster points of $\{\zeta_s \colon s \geq 3\}$ it suffices by the separability of \mathcal{K} to prove that if $h \in \mathcal{K}$, $||h||_{\mathcal{A}} < 1$ and $\epsilon > 0$ there is a c > 1 so that with probability one $||\xi_{[c^n]} - h||_{C_s} < \epsilon$ for infinitely many n. By Lemma 7 choose r > 1 and k sufficiently large so that (5) holds with ϵ replaced by $\epsilon/3$ for all sufficiently large s. By Lemma 4(d) choose k large enough so that $||h - h^{(k)}||_{C_s} < \epsilon/3$. Then for every c > 1, applying these estimates and the Borel-Cantelli lemma, we have with probability one that

$$\begin{aligned} \|\zeta_{[c^*]} - h\|_{C_{\theta}} &\leq 2\epsilon/3 + \|\zeta_{[c^*]}^{(k)} - h^{(k)}\|_{C_{\theta}} \\ &\leq 2\epsilon/3 + \|P\| \sup_{0 \leq t \leq 1} \|\zeta_{[c^*]}^{(k)}(t) - h^{(k)}(t)\|_{H} \end{aligned}$$

for all sufficiently large n.

It now suffices to show that with probability one

(6)
$$\sup_{0 \le t \le 1} \|\xi_{[c^n]}^{(k)}(t) - h^{(k)}(t)\|_H < \epsilon/3\|P\|$$

for infinitely many n. Our argument follows an idea due to Strassen.

Let $m \ge 2$ be an integer, $0 < \delta < 1$, and assume $Z_{j,[c^n]}$ and h_j (j = 1, ..., k) are the jth-coordinates of $\zeta_{[c^n]}^{(k)}$ and $h^{(k)}$. We define the event

$$A_n = \{w: |(Z_{j,[c^n]}(w,i/m) - Z_{j,[c^n]}(w,i-1/m)) - (h_j(i/m) - h_j(i-1/m))|$$

$$< \delta/k \text{ for } i = 2, \dots, m \text{ and } i = 1, \dots, k\}.$$

Then

$$\Pr(A_n) \ge \prod_{i=2}^m \prod_{j=1}^k \frac{1}{\sqrt{2\pi}} \int_{a_{ij}}^{b_{ij}} e^{-s^2/2} ds$$

where (letting LL denote log log)

$$a_{ij} = |h_j(i/m) - h_j(i - 1/m)|\sqrt{2mLL[c^n]},$$

$$b_{ii} = (|h_i(i/m) - h_i(i - 1/m)| + \delta/k)\sqrt{2mLL[c^n]},$$

for i = 2, ..., m; j = 1, ..., k. Using the estimate

$$\int_a^b \exp(-s^2/2) ds \ge \frac{\exp(-a^2/2)}{b} (1 - \exp(-(b^2 - a^2))/2) \quad \text{for } 0 \le a < b$$

we have a constant $\gamma > 0$ such that

$$\Pr(A_n) \geq \gamma \prod_{i=2}^m \prod_{j=1}^k \frac{\exp(-a_{ij}^2/2)}{b_{ij}}$$

for all *n* sufficiently large (because $0 \le a_{ij} < b_{ij}$ implies $b_{ij}^2 - a_{ij}^2 \ge (b_{ij} - a_{ij})^2 \ge (\delta^2/k^2)2mLL[c^n]$). Hence there is a constant $\gamma_1 > 0$,

$$\Pr(A_n) \ge \frac{\gamma_1 \exp\left\{\sum_{i=2}^{m} \sum_{j=1}^{k} (h_j(i/m) - h_j(i-1/m))^2 m L L[c^n]\right\}}{(2m L L[c^n])^{(m-1)k/2}} \\ \ge \frac{\gamma_1 \exp\left\{-\|h^k\|_{\mathcal{A}} \cdot L L[c^n]\right\}}{(2m L L[c^n])^{mk/2}},$$

and since $\theta = ||h^k||_{\mathcal{H}} < 1$ we have

$$\Pr(A_n) \geq \frac{\gamma_1}{(\log[c^n])^{\theta} (2mLL[c^n])^{mk/2}}.$$

Hence for c = m we have A_1, A_2, \ldots independent and

$$\Pr(A_n) \ge \frac{\gamma_1}{(n \log m)^{\theta} (2m(\log n + \text{LL}m))^{mk/2}} \ge \frac{\gamma_2}{n^{\theta} (\log n)^{mk/2}}$$

for all n sufficiently large.

Now $\theta < 1$ implies $\sum_{n=1}^{\infty} \Pr(A_n) = \infty$ so by Borel-Cantelli $\Pr(\limsup_n A_n) = 1$.

Using the fact that the *H*-norm and the *B*-norm are equivalent on the finite dimensional subspace of *B* generated by $\{x_1, \ldots, x_k\}$ we have by the first part of the proof that with probability one $\zeta_{[c^n]}^{(k)}(t)$ is eventually within δ of $\mathcal{K}^{(k)}$. Here $\mathcal{K}^{(k)}$ is the subset of \mathcal{K} consisting of functions of the form $\sum_{j=1}^k x_j^*(w(t))x_j$. Hence with probability one

(7)
$$\|\zeta_{c^{n}}^{(k)}(s) - \zeta_{c^{n}}^{(k)}(t)\|_{H} \leq \sqrt{|t-s|} + \delta$$

for all $0 \le s$, $t \le 1$ and all *n* sufficiently large. Now if $y \in C_B[0, 1]$ and *y* satisfies

(a)
$$||y^{(k)}(t) - y^{(k)}(s)||_H \le \sqrt{|t - s|} + \delta \ (0 \le s, t \le 1),$$

(b) $|(y_j(i/m) - y_j((i-1)/m)) - (h_j(i/m) - h_j((i-1)/m))| < \delta/k$ for all $j = 1, \ldots, k, 2 \le i \le m$ where y_j is the jth coordinate of y, then

$$\sup_{0 < t < 1} \|y^{(k)}(t) - h^k(t)\|_H < \epsilon/3 \|P\|$$

provided m is sufficiently large and δ is sufficiently small. Using the definition of A_n and (7) we see that with probability one (6) holds for infinitely many n. This concludes the proof.

The next corollary follows immediately from Theorem 1.

Corollary 1. Let θ be a continuous function on C_B into a Hausdorff topological space Y and assume the notation of Theorem 1. Then with probability one $\{\theta \circ \zeta_s : s \geq 3\}$ converges to the compact set $\theta(\mathcal{K})$ and clusters at each point of $\theta(\mathcal{K})$.

Corollary 2. If $\{W(t): 0 \le t < \infty\}$ is Brownian motion on B, then

$$\Pr\left(\overline{\lim_{s\to\infty}}\frac{\|W(s)\|_B}{\sqrt{2s\log\log s}} = \sup_{x\in K} \|x\|_B\right) = 1.$$

Proof. Since $||W(s)||_B/\sqrt{2s \log \log s} = ||\zeta_s(1)||_B$ this result follows from Corollary 1 with $\theta(f) = ||f(1)||_B$ and by showing that $\sup_{f \in \mathcal{K}} ||f(1)||_B = \sup_{x \in K} ||x||_B$. Now if $f \in \mathcal{K}$, then by Lemma 4(c) $||f(1)||_H \le ||f||_{\mathcal{H}} \le 1$ and hence $f(1) \in K$ $\subseteq H$. On the other hand, if $x \in K$ we can set f(t) = tx and then $||f||_{\mathcal{H}}^2 = (x, x)_H \le 1$. Hence $f(t) = tx \in \mathcal{K}$ and $\theta(f) = ||x||_B$. By combining the above we have

$$\sup_{f\in\mathcal{K}}||f(1)||_{B}=\sup_{x\in\mathcal{K}}||x||_{B},$$

and the proof is complete.

For the following recall the statements I and II of the introduction.

Corollary 3. I holds.

Proof. If $B = \mathbb{R}^k$ then H = B, $\mathcal{K} = K_k$ and the result in I follows immediately.

Corollary 4. II holds.

Proof. Construct Brownian motion in B, call it $\{W(t): 0 \le t < \infty\}$, such that $\mu_1 = \mu$. Let $\theta(f) = f(1)$ for $f \in C_B$. Using the stationary independent increments of $\{W(t)\}$ it follows that the joint distributions of $\{\xi_n: n \ge 3\}$ are identical to those of $\{\theta(\zeta_n): n \ge 3\}$ where ζ_n is as in Theorem 1. Hence with probability one $\{\xi_n: n \ge 3\}$ converges to the set $\theta(\mathcal{K})$ and clusters at each point of $\theta(\mathcal{K})$ by Corollary 1. Now by the argument given in Corollary 2 $\theta(\mathcal{K}) = K$ and hence the proof is complete.

Remark. In view of Lemma 3 it follows that K is compact in B and hence Corollary 4 actually implies the sequence $\{\zeta_n : n \geq 3\}$ is relatively norm compact with probability one and that its limit points consist precisely of K (with probability one). This is slightly stronger than II. Finally II generalizes the law of the iterated logarithm of [3] to Gaussian random variables in B.

REFERENCES

- 1. R. Dudley, J. Feldman and L. LeCam, On seminorms and probabilities, and abstract Wiener spaces, Ann. of Math.
- 2. L. Gross, Lectures in modern analysis and applications. II, Lecture Notes in Math., vol. 140, Springer-Verlag, New York.
- 3. P. Hartman and A. Wintner, On the law of the iterated logarithm, Amer. J. Math. 63 (1941), 169-176. MR 2,228.
- 4. W. Feller, An introduction to probability theory and its applications. Vol. II, Wiley, New York, 1966. MR 35 #1048.
- G. Kallianpur, Abstract Wiener processes and their reproducing kernel Hilbert spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 (1971), 113-123. MR 43 #6961.
- 6. J. Kuelbs, Expansions of vectors in a Banach space related to Gaussian measures, Proc. Amer. Math. Soc. 27 (1971), 364-370. MR 42 #2517.
- 7. R. LePage, Note relating Bochner integrals and reproducing kernels to series expansions on a Gaussian Banach space, Proc. Amer. Math. Soc. 31 (1972),
- 8.——, Log Log law for Gaussian processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete (to appear).
- 9. E. Parzen, Probability density functionals and reproducing kernel Hilbert spaces, Proc. Sympos. Time Series Analysis (Brown University, 1962), Wiley, New York, 1963, pp. 155-169. MR 26 #7119.
- 10. V. Strassen, An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 211-226. MR 30 #5379.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706 (Current address of J. Kuelbs)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER, COLORADO 80302

Current address (R. LePage): Department of Probability and Statistics, Michigan State University, East Lansing, Michigan 48823